Higher Order Cut Finite Elements for the Wave Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation

Solving the wave equation by a C o finite element method requires to mass-lump the term in time of the variational f6rmulation in order to avoid the inversion of a n-diagonal symmetric matrix at each time-step of the algorithm. One can easily get this mass-lumping on quadrilateral meshes by using a h-version of the spectral elements, based on Gauss-Lobatto quadrature formulae but the equivalent...

متن کامل

Parallel Solution of the Wave Equation Using Higher Order Finite Elements

We present a parallel solver for wave propagation problems based on the higher order explicit finite elements developed by Cohen et al. These elements were introduce to allow mass-lumping while preserving high accuracy. Our approach is based on a coarse grain, domain splitting parallelism, and uses the new MPI standard as message passing library. The program currently runs on a network of works...

متن کامل

Algebraic multigrid for higher-order finite elements

Two related approaches for solving linear systems that arise from a higher-order finite element discretization of elliptic partial differential equations are described. The first approach explores direct application of an algebraic-based multigrid method (AMG) to iteratively solve the linear systems that result from higher-order discretizations. While the choice of basis used on the discretizat...

متن کامل

Higher - Order Finite Elements on Pyramids

We present a construction of high order finite elements for H1, H(curl), H(div) (and L2) on a pyramid, which are compatible with existing tetrahedral and hexahedral high order finite elements and satisfy the commuting diagram property.

متن کامل

Geodesic Finite Elements of Higher Order

We generalize geodesic finite elements to obtain spaces of higher approximation order. Our approach uses a Riemannian center of mass with a signed measure. We prove well-definedness of this new center of mass under suitable conditions. As a side product we can define geodesic finite elements for non-simplex reference elements such as cubes and prisms. We prove smoothness of the interpolation fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2019

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-019-01004-2